

www.hanna.es

Buenas prácticas en la medida del pH.

Los 10 errores más comunes y cómo evitarlos

Concepto de pH

10° 10° 10°

10-3

10⁻⁴ 10⁻⁵

10-6

10-7

10-8

10⁻⁹

10⁻¹⁰ 10⁻¹¹

10⁻¹² 10⁻¹³

10-14

Concepto de pH

- Indica el grado de acidez o alcalinidad de una solución acuosa.
- pH 7 es neutral: la actividad de iones hidrogeno (H⁺) e hidróxido (OH⁻) es igual.
- Se mide en escala logarítmica de 0-14.

рН	Rango	H+-concentration
0		1
1		0.1
2		0.01
3	acido	0.001
4		0.0001
5		0.00001
6		0.000001
7	neutro	0.0000001
8		0.0000001
9		0.00000001
10		0.000000001
11	alcalino	0.00000000001
12	arcaniro	0.000000000001
13		0.000000000000001
14		0.0000000000000001

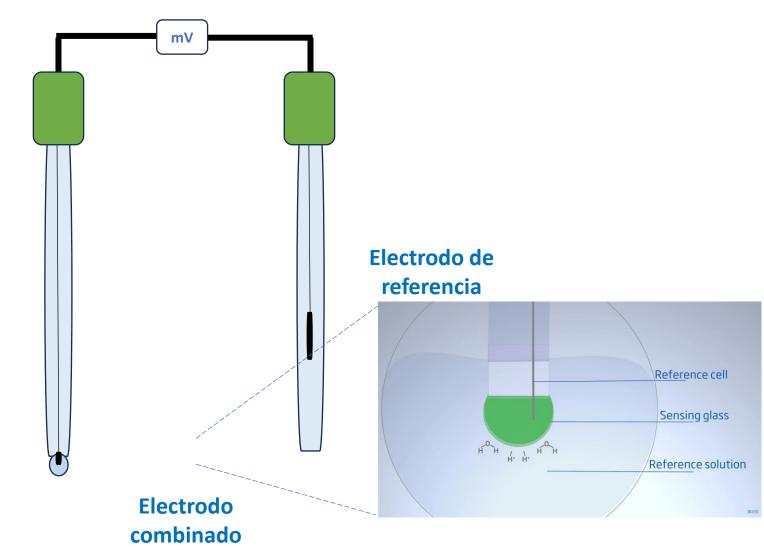


Elementos

- 1) Electrodo de referencia
- 2) Electrodo indicador
- 3) Potenciómetro/Medidor
- 4) Muestra

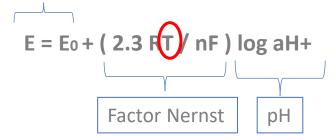
Electrodo indicador

Electrodo de referencia



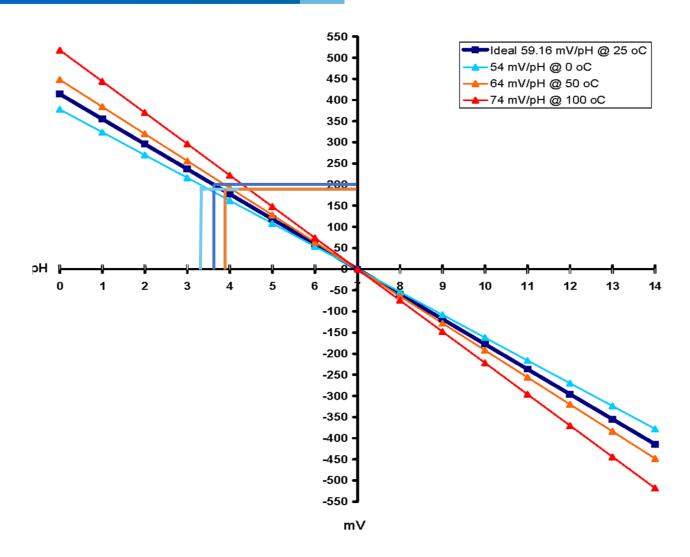
Elementos

- 1) Electrodo de referencia
- 2) Electrodo indicador
- 3) Potenciómetro/Medidor
- 4) Muestra


Electrodo indicador

Ecuación de Nernst

Diferencia de voltaje entre electrodos indicador y referencia


T: Temperatura, factor variable

La ecuación de Nernst y por lo tanto el comportamiento del electrodo de pH es totalmente dependiente de la temperatura

Ecuación de Nernst

 $E = E_0 + (2.3 RT / nF) log aH+$

Los 10 errores más comunes

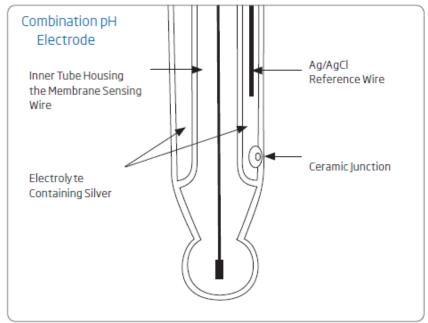
Error 1#: Selección inadecuada del electrodo

Una selección incorrecta puede suponer:

- Estabilización lenta de las medidas
- Mayor desgaste del electrodo
- Disminución de la vida útil

¿Cómo seleccionar el electrodo adecuado?

Factores a considerar en la selección del electrodo:

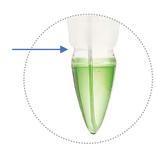

- Tipo de unión o diafragma
- Tipo de vidrio de la membrana

Error 1#: Selección inadecuada del electrodo

1. <u>Tipo de unión o diafragma:</u> Punto de comunicación entre la muestra y el electrolito interno

- Parte crítica del electrodo, factor importante para la selección.
- La solución electrolítica fluye hacia el exterior a través del diafragma.
- Cualquier obstrucción, derivará en medidas erráticas e inestables.

_


Error 1#: Selección inadecuada del electrodo

Unión cerámica Flujo de 15µl/hr

Usos generales Laboratorio Aguas, baja viscosidad

Unión abierta
Flujo de 500µl/hr
Libre difusión

Unión triple cerámica
Flujo de 45µl/hr

Emulsiones, Muestras viscosas, Baja conductividad

Unión abierta con sistema antiobturación

Flujo de 500µl/hr Muestras con alta carga orgánica

Aguas residuales, Vinos, zumos

Unión PTFE

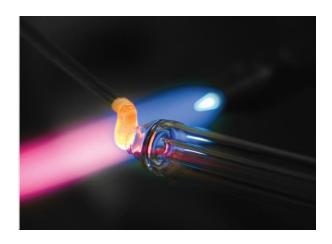
Material hidrofóbico, Resistente

Aplicaciones Industriales

Error 1#: Selección inadecuada del electrodo

2. Tipo de vidrio de la membrana:

- Rango de pH de trabajo
- Resistencia térmica Ta
- Resistencia química


En Hanna disponemos de 4 tipos de vidrio:

• **LT**: Bajas temperaturas

• **GP**: T^a ambiente

• **HT**: Medias y altas temperaturas

• **HF**: Resistente a fluoruros

Tipo	Resistencia
LT	-5ºC a 50ºC / pH= 0 −12
GP	0ºC a 70ºC / pH= 0 −13
нт	20ºC a 100ºC / pH= 0 −14
HF	Fluoruros

Error 1#: Selección inadecuada del electrodo

2. Tipo de vidrio de la membrana:

- Rango de pH de trabajo
- Resistencia térmica Tº
- Estabilidad química

Temperatura de la muestra	Vida útil media
25°C	1 a 2 años
50°C	6 a 12 meses
75°C	3 a 6 meses
100°C	<1 mes

En Hanna disponemos de 4 tipos de vidrio:

• LT: Baja temperatura

• **GP**: T^a ambiente

• **HT**: medias y altas temperaturas

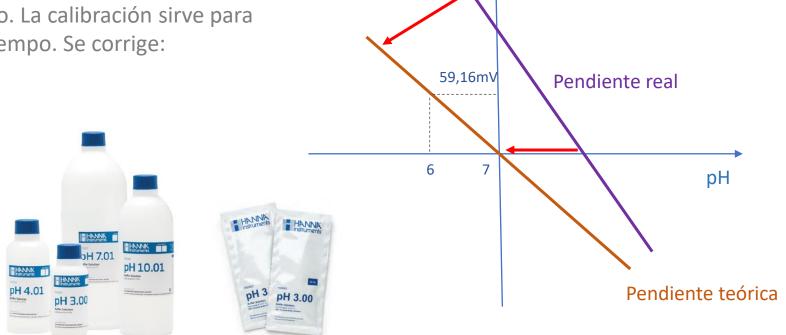
• **HF**: Resistentes a fluoruros

Tipo	Resistencia
LT	-5ºC a 50ºC / pH= 0 −12
GP	0ºC a 70ºC / pH= 0 −13
нт	20ºC a 100ºC / pH= 0 −14
HF	Fluoruros

Aplicación		Características	Electrodo
Laboratorio	Usos generales	vidrio	HI 1110
		plástico	HI 1230
	Universal	vidrio, altas Tª	HI 1131
	Potables, de riego, conductividades intermedias	usos generales, plástico	HI 1230
		usos generales, vidrio	HI 1110
Aguas	Residuales	titanio	HI 1296 / HI 72911
Aguas	Nesiduales	usos generales, plástico	HI 1230
	Acuarios, Piscinas	usos generales, plástico	HI 1230
	Bajas conductividades	3 diafragmas	HI 1053
	Lácteos: quesos, yogures, natas	semisólidos, vidrio	FC 210/ 213
		penetración PVDF	FC 200/202
		penetración renovable	FC 2053
	Cárnes	penetración PVDF	FC 200/202
	Carnes	penetración con cuchilla	FC 230 / 232
Alimentación	Vinos, mostos, zumos	muestras difíciles	HI 1048
	Salsas, salmueras	muestras difíciles	HI 1048
		semisólidos, vidrio	FC 210/ 213
	Cervezas	vidrio, altas Tª	HI 1131
		Titanio	FC 214
	Salmueras	Usos generales, plástico	HI 1230
		universal, vidrio altas Tª	HI 1131
		muestras difíciles	HI 1048

Aplicación		Características	Electrodo
Cosmética	Cremas, emulsiones, jabones	muestras viscosas, bajas conductividades, vidrio	FC 210 / HI 1053
		altas conductividades, alta Tª	HI 1043
		muestras difíciles	HI 1048
	Piel, cuero	superficies	HI 1014
	Micromuestras	Micromuestras, 5 mm.	HI 1330
Pinturas, disolventes, barnices	Baños, decapantes	muestras difíciles	HI 1048
	Disolventes	alta Tª y alcalinidad	HI 1043
Aplicaciones especiales	altas Tª y alta alcalinidad	universal, vidrio HT	HI 1131 / HI 1043
	Contenido en fluoruro	Muestras con fluoruros	HI 1143
	pHs extremos, ácidos y bases fuertes	vidrio HT, 3 diafragmas	HI 1043
	Micromuestras	Micro muestras, 5 mm.	HI 1330
	Superficies planas: piel, papel, cuero	punta plana, vidrio	HI 1413
	Superficies planas: industria	punta plana, titanio	HI 72911

Info@hanna.es


Error 2#: Errores de calibración

Los electrodos se desajustan con el tiempo. La calibración sirve para corregir los cambios del electrodo en el tiempo. Se corrige:

- El potencial de asimetría
- La pendiente

No utilizar tampones frescos

- Revisar fecha de caducidad
- Abiertos:
 - pH 4 y 7: 3-4 meses
 - pH 10: 1-2 meses
- No dejar la botella destapada

mV

De su calidad depende la calidad de las medidas

Error 2#: Errores de calibración

• Contaminar las soluciones tampón

- Devolver las soluciones a la botella
- No introducir el electrodo en la botella

- Verter las soluciones en vasos limpios
- Enjuagar el electrodo con agua desionizada

No calibrar periódicamente

Dependerá de la precisión exigida por el usuario

- Realizar la calibración en al menos 2 puntos
- Buffers próximos al valor de pH a medir

¿Cada cuánto debo calibrar el electrodo?

Recomendaciones:

- Al menos una vez por semana
- Si se utiliza puntualmente, siempre antes de empezar
- Después de un almacenamiento prolongado
- Siempre que el electrodo sea nuevo
- Si utilizamos sustancias químicas agresivas

Error 3#: No inspeccionar el electrodo

- Daños físicos: golpes, fisuras, marcas en el electrodo...
 Es conveniente sustituir el electrodo.
- Sales: Es posible que durante el transporte se formen sales en el electrodo. Es la solución de almacenamiento que se ha secado. El electrodo está en <u>buen estado</u>
 - Enjuagar con agua destilada
 - Sumergir en solución de almacenamiento
- Burbujas: Las burbujas interfieren en la medida del pH.
 Inspeccionar el electrodo y eliminar cualquier burbuja agitando el electrodo como si fuera un termómetro clínico.

Error 4#: No aflojar el orificio de relleno

- Aplicable a electrodos rellenables
- Sirve para que el electrolito interno no se salga
- Se afloja para aumentar el flujo
- Mantener el orificio cerrado puede dar lugar a tiempos de estabilización más lentos.

Error 5#: Nivel bajo del electrolito de relleno

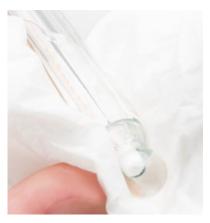
- El electrolito fluye hacia el exterior desde la unión o diafragma.
- La solución electrolítica es imprescindible para el intercambio de iones
- Un nivel bajo de electrolito deriva en lecturas erróneas

Mantener el nivel 1 cm por debajo del orificio de relleno

Demasiado bajo

Error 6#: Inmersión inadecuada del electrodo

- **Diafragma:** Punto de comunicación entre la muestra y el electrolito interno.
- Si no se sumerge, estaremos midiendo el aire a su alrededor.
- Asegúrate de tener suficiente cantidad de muestra



Error 7#: Frotar con un paño

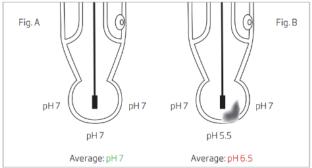
- El bulbo está compuesto por capas de vidrio sensibles a los iones
- Frotar el vidrio con un paño puede producir una carga electrostática que interfiere con la lectura.

Nunca se debe raspar ni frotar la membrana del electrodo

• Para limpiar el electrodo, enjuagar con agua destilada, secar por contacto

Error 8#: No limpiar el electrodo regularmente

- Con el tiempo, se pueden formar depósitos en el electrodo
- La suciedad crea una barrera entre la muestra y el vidrio dando lecturas incorrectas
- El agua destilada no elimina estos depósitos


¿Cuándo?

- Contaminación visible
- Mucho tiempo en estabilizar

¿Cómo?

- Sumergir en solución de limpieza 15-20 minutos
 - o Encuentra la solución más adecuada para tu tipo demuestra
- Aclarar con agua destilada
- Rehidratar con solución de almacenamiento, 1 hora

Error 9#: Almacenar el electrodo en seco

- La capa hidratada es responsable de proporcionar al electrodo de la sensibilidad a los cambios en el pH.
- Si se seca, **se reduce considerablemente la sensibilidad** del electrodo.
- Conduce a valores incorrectos de pH, tiempos de respuesta lentos...

CONSEJO para REACTIVAR un electrodo seco:

- Sumergir en **solución de almacenamiento** durante la noche (o al menos 2 horas)
- Calibrar el electrodo antes de utilizarlo

Error 10#: Almacenar el electrodo en agua destilada

- El agua destilada no contiene iones, sin embargo, la solución interna del electrodo sí.
- Almacenar el electrodo en agua destilada provoca la migración del electrolito interno hacia el exterior.

Almacenar en solución de almacenamiento <

- Mantiene la membrana hidratada
- Mantiene el electrodo bien acondicionado y funcionando correctamente por más tiempo.

Recomendación

Verificar el estado del electrodo

- Con el tiempo, los electrodos se desgastan
- La pendiente de calibración del electrodo te servirá como indicador

Punto cero y pendiente:

• Punto Cero (Offset): mV generados por un electrodo sumergido en tampón de pH 7

Valor teórico: 0 mV

En uso: ±30 mV

• Pendiente: Respuesta del electrodo expresada como variación de mV por cada unidad de pH

Valor teórico a 25°C : 59,16 mV/pH

рН	mV
4	177,48
5	118,32
6	59,16
7	0
8	-59,16
9	-118,32
10	-236,64

Recomendación

Verificar el estado del electrodo

Cálculo Estado en %:

EJEMPLO:

Offset/ mV pH 7,01: -15 mV

-pH 4,01: 160 mV

- -[160 (-15)] / 3 = 58,33 mV/pH
- Estado del electrodo % = 58,33 / 59,16 x 100 = **98,59%**

- Entramos en modo lectura mV
- Anotar mV en tampón pH 4 y 7
- Restamos el valor mV entre pH 4 y 7
- Dividimos entre las unidades de pH
- Dividimos el resultado por 59,16 (valor teórico) y multiplicar x 100
- Diagnostica el Estado de tu Electrodo

Recomendación

Criterio y pautas a seguir:

95% – 105%: Rango ideal

≤ 95%: Rango recomendable para la limpieza/regeneración electrodo

≤ 85%: Rango para reemplazar el electrodo

Dandiants (0/)	Offset	
Pendiente (%)	±30 mV	> ±30 mV
95-105 %	Electrodo en buen estado	Se recomienda limpiar y rehidratar
85-95 %	Se recomienda limpiar/regenerar y rehidratar	Se recomienda limpiar/regenerar y rehidratar
<85 o >105 %	Electrodo desgastado, se recomienda sustituir	Electrodo desgastado, se recomienda sustituir

Resumen

1- Mantener el electrodo hidratado

¿Por qué? – Un electrodo seco conduce a valores de pH inestables, tiempos de respuesta lentos, y lecturas incorrectas.

Solución – "Reaviva" un electrodo seco sumergiendo la membrana y la unión en solución de almacenamiento (KCI) durante al menos una hora.

4- Limpiar el electrodo a menudo

¿Por qué? - Los restos de producto pueden generar un recubrimiento en la membrana sensible del electrodo, provocando calibraciones y lecturas erróneas.

Solución-Limpiar el electrodo con soluciones de limpieza específicamente formuladas para tu producto.

2- Enjuagar, no frotar el electrodo

¿Porqué?- Frotar el vidrio de pH puede producir una carga electroestática que interfiere con la lectura de pH del electrodo.

Solución – Simplemente enjuagar el electrodo con agua destilada. Secar por contacto (sin frotar) con un papel absorvente sin pelusas para eliminar el exceso de humedad.

5- Calibración frecuente

¿Por qué? – Todos los electrodos de pH deben ser calibrados habitualmente para una mejor precisión.

Solución – La frecuencia de la calibración depende de la precisión exigida por el usuario. Una calibración diaria es ideal.

3- Guardar en solución de almacenamiento

¿Por qué? – Almacenar el electrodo en agua destilada, provoca la migración de iones del electrolito de referencia hacia el exterior. Dando como resultado medidas lentas.

Solución – Almacenar el electrodo en solución de almacenamiento o pH 4.01 si no tienes solución de almacenamiento.

6- Elegir el electrodo adecuado para la muestra

¿Por qué? – Los electrodos de usos generales son funcionales para una amplia variedad de aplicaciones pero no sirven para todas las muestras.

Solución – Basándose en su muestra puede requerir un diseño de electrodo diferente. Hay muchos diseños disponibles: para alimentos, altas o bajas temperaturas, no acuosos...

7- Abrir o aflojar el orificio de relleno de electrolito

Por qué? – Mantener el orificio cerrado puede provocar lecturas que tardan más en estabilizarse ya que disminuye el flujo de electrolito.

Solución – Abrir o aflojar el orificio durante las medidas y calibraciones. Recuerde volver a cerrarlo para almacenario. (No aplicable para electrodos no rellenables)

8- Mantener el nivel de electrolito adecuado

Por qué? – El electrolito fluye hacia el exterior desde la unión o diafragma. Un nivel bajo de electrolito deriva el lecturas erróneas. (No aplicable para electrodos no rellenables).

Solución – Asegurarse de que el nivel de electrolito no baja a más de 1cm desde el orificio de llenado.

9- Sumergir adecuadamente el electrodo

¿Por qué? – Tanto la membrana sensible como el diafragma o unión tienen que estar sumergidas para que el electrodo funcione correctamente.

Solución – Añadir más disolución o muestra para cubrir correctamente el electrodo.

10- Examinar el electrodo

¿Por qué? - Con el tiempo de uso, la membrana sensible del electrodo responde de forma más lenta y puede fallar.

Solución – Verificar que el electrodo no está físicamente dañado y comprobar el offset y la pendiente del electrodo.

¡Gracias por vuestra atención!

Arantxa Ferreiro arantxa@hanna.es

www.hannainst.es info@hanna.es

www.hanna.es